Top Incomes, Issues with Survey Data, and Inequality: Evidence from Simulations and Linked Income and Tax Return Data

Sean Higgins (UC Berkeley)
Nora Lustig (Tulane University)
Andrea Vigorito (Universidad de la República)

LACEA–LAMES
Buenos Aires
November 9, 2017

1This research project was conducted for the Commitment to Equity (CEQ) Institute. The study was made possible thanks to the generous support of the Bill & Melinda Gates Foundation. For more details about the CEQ Institute, visit www.commitmenttoequity.org.
Motivation

- Many issues with survey data
 - Lead to biased inequality estimates (Chesher and Schluter, 2002; Cowell and Flachaire, 2007)
- Often these issues lead to the “missing rich”
 - Underestimation of income at the top
 - Resulting bias in inequality estimate can be substantial!
- Various corrections proposed (Atkinson, 2007; Jenkins, 2017; Campos-Vazquez and Lustig, 2017)
 - These corrections make a lot of assumptions
 - Mostly untestable (until now)
This paper

- Novel data set on linked household survey data and tax returns from Uruguay
- Assuming tax return data is “correct” (for now):
 - Examine misreporting of labor income in household survey
 - Examine undercoverage
 - Biases in survey design (sampling frame not the same as target population)
 - Unit non-response (individuals cannot be reached or refuse to respond)
- Simulate these issues on full tax return data set
- Simulate proposed corrections and see how well they work
Data: Tax Returns

- Universe of potential tax payers, 2009–2014
- ~1.9 million observations per year
- Main variables:
 - Pre- and post-tax annual income by source
 - Monthly labor earnings
 - Taxes
 - Deductions
 - Sex, age, industry, firm characteristics
- Around 33% of workers in data are above minimum threshold and thus pay taxes
- Limitations: evasion, avoidance, non-taxable rents
Data: Household Survey

- **Encuesta Continua de Hogares**
 - Income and labor force status from 2012–13 wave interviews
 - We focus on labor income
 - Nationally representative sample
 - Sample size: 46,550 in 2012 and 46,669 in 2013

- Follow-up nutrition survey on subsample \((N = 2704)\)
 - This is the survey that asked identifiers to merge with tax data
 - Mothers with children aged 0–3
 - For now we can only use this subsample
 - But working with statistical institute to do analysis on full survey sample in ongoing wave
Merged Data

- Of the 2704 in ECH follow-up survey:
 - 1236 merged (1412 in ECH follow-up declared being employed)
 - 775 with positive labor earnings in month preceding ECH interview

- This is our final sample for merged data tests
Simulations

- We simulate three types of issues, using linked Uruguay data to guide functional form of simulations:
 1. Misreporting
 - People respond to survey but report incorrect income amounts; possibly correlated with income
 2. Undercoverage
 - Unit non-response: some do not respond to survey
 - Bias: sampling frame not the same as target population
 - Possibly correlated with income
 3. Extreme observations
 - Everyone sampled responds to survey, but what is effect of only sampling some of top incomes?
Corrections

- We simulate two types of corrections supposing we have some information about the “true” income distribution
 1. Reweighting
 - *à la* Campos-Vazquez and Lustig (2017)
 - Suppose you know density of people within each of a number of income bins
 - Reweight in survey to match that density
 2. Adjusting incomes
 - Suppose you know mean income by group (e.g. decile) of “true” distribution
 - Scale incomes in the survey within each group to match incomes in true distribution

- Identical in theory *(Bourguignon, 2017)*
 - If continuous distribution with same support
Distribution for Simulations

- Use full distribution of positive labor income earners \((N = 1.3 \text{ million}) \) from Uruguay tax returns data.
Misreporting

- We impose the same relationship between income and misreporting as that observed in the merged Uruguay data
 - Using a non-linear Loess regression
Misreporting

- True Gini
- Mean Simulated Gini
- Frequency in 1000 Simulations

Simulated Ginis

- Frequency in 1000 Simulations

Graph showing the comparison between True Gini and Mean Simulated Gini.
Misreporting, Income Adjustment by Centile

- True Gini
- Mean Simulated Gini
- Mean Corrected Gini

Simulated Ginis Frequency in 1000 Simulations
Misreporting, Income Adjustment by Decile

Simulated Ginis

Frequency in 1000 Simulations

Simulated Gini
True Gini
Mean Corrected Gini

0.36 0.40 0.44 0.48 0.52

Simulated Ginis

0
120
240
360
480
600

0
0.36 0.40 0.44 0.48 0.50

Simulated Ginis
Random Non-response

- Assume $P(n) = .2$, independent of income
Non-response Increases with Income

(a) $P(n) = .1 + .2F(y)$
Non-response Increases with Income

(a) \(P(n) = 0.1 + 0.2F(y) \)

(b) \(P(n) = \mathbb{I}(F(y) > 0.7) \cdot (0.567 + \frac{2}{3}(F(y) - 0.7)) \)
Non-response as in Uruguay

Centile in full tax return data set

Percent in survey

0 25 50 75 100
Non-response as in Uruguay

![Graph showing frequency in 1000 simulations for True Gini and Mean Simulated Gini vs. Simulated Ginis. The graph indicates a peak around 0.44, with True Gini at 0.50.](image)
Extreme Observations

- 1% sample within each percentile